The effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems
نویسندگان
چکیده
Context. Our previous models of a giant planet migrating through an inner protoplanet/planetesimal disk find that the giant shepherds a portion of the material it encounters into interior orbits, whilst scattering the rest into external orbits. Scattering tends to dominate, leaving behind abundant material that can accrete into terrestrial planets. Aims. We add to the possible realism of our model by simulating type I migration forces which cause an inward drift, and strong eccentricity and inclination damping of protoplanetary bodies. This extra dissipation might be expected to enhance shepherding at the expense of scattering, possibly modifying our previous conclusions. Methods. We employ an N-body code that is linked to a viscous gas disk algorithm capable of simulating: gas accretion onto the central star; gap formation in the vicinity of the giant planet; type II migration of the giant planet; type I migration of protoplanets; and the effect of gas drag on planetesimals. We use the code to re-run three scenarios from a previous work where type I migration was not included. Results. The additional dissipation introduced by type I migration enhances the inward shepherding of material but does not severely reduce scattering. We find that > 50% of the solids disk material still survives the migration in scattered exterior orbits: most of it well placed to complete terrestrial planet formation at < 3 AU. The shepherded portion of the disk accretes into hot-Earths, which survive in interior orbits for the duration of our simulations. Conclusions. Water-rich terrestrial planets can form in the habitable zones of hot-Jupiter systems and hot-Earths and hot-Neptunes may also be present. These systems should be targets of future planet search missions.
منابع مشابه
On the formation of terrestrial planets in hot–Jupiter systems
Context. There are numerous extrasolar giant planets which orbit close to their central stars. These ‘hot-Jupiters’ probably formed in the outer, cooler regions of their protoplanetary disks, and migrated inward to ∼ 0.1 AU. Since these giant planets must have migrated through their inner systems at an early time, it is uncertain whether they could have formed or retained terrestrial planets. A...
متن کاملTerrestrial planet formation in low eccentricity warm – Jupiter systems
Context. Extrasolar giant planets are found to orbit their host stars with a broad range of semi-major axes 0.02 ≤ a ≤ 6 AU. Current theories suggest that giant planets orbiting at distances between ≃ 0.02 – 2 AU probably formed at larger distances and migrated to their current locations via type II migration, disturbing any inner system of forming terrestrial planets along the way. Migration p...
متن کاملCan Terrestrial Planets Form in Hot-Jupiter Systems?
Models of terrestrial planet formation in the presence of a migrating giant planet have challenged the notion that hot-Jupiter systems lack terrestrial planets. We briefly review this issue and suggest that hot-Jupiter systems should be prime targets for future observational missions designed to detect Earth-sized and potentially habitable worlds.
متن کاملTerrestrial Planet Formation in Extra-Solar Planetary Systems
Terrestrial planets form in a series of dynamical steps from the solid component of circumstellar disks. First, km-sized planetesimals form likely via a combination of sticky collisions, turbulent concentration of solids, and gravitational collapse from micron-sized dust grains in the thin disk midplane. Second, planetesimals coalesce to form Moonto Mars-sized protoplanets, also called “planeta...
متن کاملOligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration
Giant planets found orbiting close to their central stars, the so-called ‘hot Jupiters’, are thought to have originally formed in the cooler outer regions of a protoplanetary disk and then to have migrated inward via tidal interactions with the nebula gas. We present the results of N–body simulations which examine the effect such gas giant planet migration has on the formation of terrestrial pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008